TGF-β Induces Degradation of PTHrP Through Ubiquitin-Proteasome System in Hepatocellular Carcinoma

نویسندگان

  • Hao Li
  • Guangchun He
  • Hui Yao
  • Liujiang Song
  • Liang Zeng
  • Xiaoning Peng
  • Thomas J. Rosol
  • Xiyun Deng
چکیده

Both transforming growth factor-β (TGF-β) and parathyroid hormone-related protein (PTHrP) regulate important cellular processes, such as apoptosis in the development of hepatocellular carcinoma. However, the mechanisms of regulation of PTHrP by TGF-β are largely unknown. We hypothesized that TGF-β regulates the expression of PTHrP protein through a post-translational mechanism. Using hepatocellular carcinoma cell lines as the in vitro model, we investigated the effects of TGF-β on protein expression and post-translational processing of PTHrP. We found that TGF-β treatment led to protein degradation of PTHrP through the ubiquitin-proteasome-dependent pathway. We also provided evidence to show that Smurf2 was the E3 ligase responsible for the ubiquitination of PTHrP. Furthermore, using immunohistochemistry on human hepatocellular carcinoma specimens and a tissue array, we found that the expression of PTHrP was predominantly in the cancer cells, whereas the expression of TGF-β was present in non-neoplastic liver tissue adjacent to hepatocellular carcinoma. Our findings reveal a novel mechanism whereby TGF-β may regulate PTHrP in hepatocellular carcinogenesis and lack of TGF-β in hepatocellular carcinoma may promote cancer progression. Promotion of PTHrP degradation provides a novel target of therapeutic intervention to sensitize hepatocellular carcinoma cells to cytostatic and/or pro-apoptotic signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Proteasome Inhibitor, MG132, Attenuates Diabetic Nephropathy by Inhibiting SnoN Degradation In Vivo and In Vitro

Transforming growth factor-β (TGF-β) has been shown to be involved in diabetic nephropathy (DN). The SnoN protein can regulate TGF-β signaling through interaction with Smad proteins. Recent studies have shown that SnoN is mainly degraded by the ubiquitin-proteasome pathway. However, the role of SnoN in the regulation of TGF- β/Smad signaling in DN is still unclear. In this study, diabetic rats ...

متن کامل

Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins.

Smads are signal mediators for the members of the transforming growth factor-beta (TGF-beta) superfamily. Upon phosphorylation by the TGF-beta receptors, Smad3 translocates into the nucleus, recruits transcriptional coactivators and corepressors, and regulates transcription of target genes. Here, we show that Smad3 activated by TGF-beta is degraded by the ubiquitin-proteasome pathway. Smad3 int...

متن کامل

Jab1 antagonizes TGF-β signaling by inducing Smad4 degradation

Tumor suppressor Smad4 is the common signaling effector in the transforming growth factor β (TGF-β) superfamily. Phosphorylated regulatory Smads (R-Smads) interact with Smad4, and the complex translocates into the nucleus to regulate gene transcription. Proper TGF-β signaling requires precise control of Smad functions. Smurfs have been shown to mediate the degradation of R-Smads but not the com...

متن کامل

TGF-beta induces degradation of TAL1/SCL by the ubiquitin-proteasome pathway through AKT-mediated phosphorylation.

T-cell acute lymphoblastic leukemia 1 (TAL1), also known as stem cell leukemia (SCL), plays important roles in differentiation of hematopoietic and endothelial cells and is deregulated in a high percentage of T-cell acute lymphoblastic leukemia (T-ALL). In this report we show that the intracellular concentration of TAL1 is regulated by transforming growth factor beta (TGF-beta), which triggers ...

متن کامل

MG132 Ameliorates Kidney Lesions by Inhibiting the Degradation of Smad7 in Streptozotocin-Induced Diabetic Nephropathy

BACKGROUND Smad7 is the main negative regulatory protein in the transforming growth factor-β (TGF-β) downstream signaling pathway, which plays an important role in diabetic nephropathy (DN) and may be related to the ubiquitin proteasome pathway (UPP). AIM We investigated the role of UPP in regulating TGF-β/SMAD signaling and explored the therapeutic effect of the ubiquitin proteasome inhibito...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015